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Abstract 

A method for optimizing image-recovery algorithms is presented that is based on how well a specified visual 
task can be performed using the reconstructed images. Visual task performance is numerically assessed by 
a Monte Carlo simulation of the complete imaging process including the generation of scenes appropriate 
to the desired application, subsequent data taking, image recovery, and performance of the stated task 
based on the final image. This method is used to optimize the Algebraic Reconstruction Technique (ART), 
which reconstructs images from their projections, by varying the relaxation factor employed in the updating 
procedure. In some of the imaging situations studied, it is found that the optimization of constrained ART, 
in which a nonnegativity constraint is invoked, can vastly increase the detectability of objects. There is little 
improvement attained for unconstrained ART. 

Introduction 

The overall purpose of an imaging system is to provide visual information about the object or scene being 
imaged. For mission-oriented imaging systems, the type of scenes expected and the kind of information 
desired can frequently be specified. In such a case an imaging system should be optimized on the basis 
of how well the specified visual tasks can be performed using the resulting images. Here this approach to 
optimization is applied to only one aspect of the complete imaging system, that of the image reconstruction 
algorithm. It is shown that such an optimization is distinctly practical. 

Several classes of measures have been employed in the past on which to base the optimization of image- 
recovery algorithms [l]. Some are based on the fidelity of the reconstructed images, such as the conventional 
measure of the rms difference between the reconstruction and the original image, simply called the rms error. 
Experience teaches us that this does not always seem to be correlated with the usefulness of images. There 
are alternative measures based on how closely the estimated reconstruction reproduces the measurement 
data, for example, the mean-square residual. Unfortunately, without further constraints reconstruction 
based on~minimizing the mean-square residual is known to be ill-conditioned or even worse, ill-posed [l]. 

In the approach to algorithm optimization presented here, an algorithm is rated on the basis of how well 
one can perform stated visual tasks using the reconstructed images. As shown in Ref. [2], task performance 
in a well specified imaging situation is readily assessed numerically through a Monte Carlo technique that 
is used to simulate the complete imaging process. The optimization procedure involves maximizing task 
performance by varying whatever free parameters exist in the reconstruction algorithm. 

Method to Calculate Task Performance 

For linear imaging systems the effects of image noise on task performance can be predicted for a variety 
of simple tasks [3]. Th e same cannot be said of the effects of artifacts. The masking effects of measurement 
noise are truly random in nature. The random noise process results in each set of measurements being 
different, even when the scene being imaged does not change. However, many types of artifacts manifest 
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themselves as seemingly unpredictable irregularities that look like noise, but in a strict sense, they are not. 
Since these artifacts depend on the scene, a single realization of a simple scene is completely inadequate to 
judge a reconstruction algorithm. It is necessary to obtain a statistically meaningful average of the response 
of an algorithm to many realizations of the ensemble of scenes with which it must cope. 

A Monte Carlo technique, one that employs pseudo-random numbers to generate its results, is used to 
simulate the entire imaging process from scene generation to the final task performance, because it can 
readily provide the above variations within the ensemble. 

The method requires first a complete specification of the entire problem in the following manner: 
a) Define the class of scenes to be imaged with as much complexity as exists in the intended application. 
b) Define the geometry of the measurements. The deficiencies in the measurements such as blur, uncer- 

tainties in the geometry, and uncertainties in the measurements (noise) should be specified. 
c) Define clearly the task to be performed. Details concerning what is known about the signal and the 

background must be stated explicitly. 
d) Define the method of task performance. This method should be consistent with the intended appli- 

cation and the a priori known information. 
The simulation procedure is then ,performed by doing the following: 
e) Create a representative scene and the corresponding measurement data by means of a Monte Carlo 

simulation technique. 
f) Reconstruct the scene with the algorithm being tested. 
g) Perform the specified task using the reconstructed image. 
h) Repeat steps e) through g) a sufficient number of times to obtain the necessary statistics on the 

accuracy of the task performance. 
Finally, determine how well the task has been performed: 
i) Evaluate the task performance using the relevant measure of performance. 
The advantage of this numerical approach is that it readily handles complex imaging situations, nonsta- 

tionary imaging characteristics, and nonlinear reconstruction algorithms. Its major disadvantage is that it 
provides an evaluation that is valid only for the specific imaging situation investigated. 

ART 

The Algebraic Reconstruction Technique (ART) [4] is an iterative algorithm that reconstructs a function 
from its projections. It has proven to be a very successful algorithm, particularly for estimating a function 
when there is a limited amount of data available. Assume that N projection measurements are made of the 
unknown function f, which will be considered a vector. As these measurements are linearly related to f, 
they may be written as 

g; = H;f, i = 1, . . . . N, 

where g; is the ith measurement and H; is the corresponding row of the measurement matrix. The ART 
algorithm proceeds as follows. An initial guess is made, for example, f o = 0. Then the estimate is updated 
by iterating on the individual measurements taken in turn: 

f ktl = f k + Ak H;T 

where i = Ic mod(N)+1 and X” is a relaxation factor for the Lth update. Any applicable constraints are 
invoked after each update. For example, for constrained ART in which a nonnegativity constraint is enforced, 
when f kt1 < 0, set f k+l = 0. In the absence of constraints, the normalization of (2) is such that when 
X” = 1, fkf* is guaranteed to satisfy the measurement equation (1). In the standard nomenclature one 
iteration is completed after the full set of N measurements has been processed. We use the index K to 
indicate the iteration number (K = int(lc/N)). V ariable relaxation (or damping) factors are used here to 
attenuate successive updates during the reconstruction. We will express the relaxation factor as 

AK = X&x) K-1 . 
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Figure 1: The tist randomly generated scene consisting of 10 high-contrast and 10 low-contrast discs. The 
evaluation of task performance is based on an average over ten similar scenes. 

The proper choice of the relaxation factor is the issue at hand. There is very little guidance on this 
choice in the literature. It is known [5] that if a solution to the measurement equations exists, the ART 
algorithm will converge to it in the limit of an infinite number of iterations provided that 2 > Xk > 0. A 
value of unity is often suggested. Censor et al. [S] h ave shown that unconstrained ART ultimately converges 
to a minimum-norm least-squares solution if the relaxation factor approaches zero slowly enough. However, 
XK will asymptotically approach zero for any value of rx < 1. The value appropriate to’a finite number of 
iterations remains uncertain. In previous work the author has assumed for & and rx the nominal values of 
1.0 and 0.8 for problems involving a limited number of projections, and 0.2 and 0.8 for problems involving 
many (400) views [2]. This choice for r~ makes the Znal XK at ten iterations about seven times smaller 
than the initial one &. Next we discuss a way to find the best choice for the relaxation parameters for a 
given problem. 

Optimization of ART 

The numerically calculated task performance can be used to search for the optimum choice of X0 and 
rx for the ART algorithm. For the present purpose, the scene is assumed to consist of a number of non- 
overlapping discs placed on a zero background. For this example, each scene contains 10 high-contrast discs 
of amplitude 1.0 and 10 low-contrast discs with amplitude 0.1. The discs are randomly placed within a 
circle of reconstruction, which has a diameter of 128 pixels in the reconstructed image. The diameter of 
each disc is 8 pixels. The fist of the series of images generated for these tests is shown in Fig. 1. In 
this computed tomographic (CT) problem, the measurements are assumed to consist of a specified nuniber 
of parallel projections, each containing 128 samples. Ten iterations of ART are used in all of the present 
examples. It is assumed that the visual task to be performed is the detection of the low-contrast discs. To 
produce noisy data, random noise is added to the projection measurements using a Gaussian-distributed 
random number generator. 

The result of reconstructing Fig. 1 from 12 noiseless views spanning 180' is shown in Fig. 2. The 
seemingly random fluctuations in the background are actually artifacts produced by the limited number of 
projections and arise mainly from the high-contrast discs. As the artifacts depend on the positions of the 
discs, it is important to allow for random placement of the discs to allow for the full range of artifacts. It 
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Figure 2: Reconstructions of Fig. 1 from 12 noiseless parallel projections subtending 180° obtained with 
10 iterations of the ART algorithm (right) with and (left) without the nonnegativity constraint. These 
reconstructions were obtained with Xe = 1.0 and rx = 0.8. These images are displayed at high contrast to 
show the low-contrast discs of interest. 

appears that the nonnegativity constraint improves the reconstruction considerably in that it has reduced 
the confusion caused by the fluctuations in the background. However, some of the low-contrast discs have 
not been reproduced. Also, there still remain many fluctuations in the background that may mislead one to. 
suspect the presence of discs in places where none exist in reality. Thus, on the basis of this single example, 
one cannot say with certainty whether or not the detection of the low-contrast discs is improved by the 
nonnegativity constraint. A statistically significant comparison between reconstructions with and without 
the constraint must be made to assess its value. 

The task to be performed is the detection of the low-contrast discs. It is assumed that the position 
of a possible disc is known beforehand, as is the background. To perform the stated task of detection, 
it is assumed that the sum over the area of the disc provides an appropriate decision variable. This is 
an approximation of the optimum decision variable when the image is corrupted by additive uncorrelated 
Gaussian noise [ 71. After reconstruction, the sums over each region where the low-contrast objects are 
known to exist are calculated, as well as those over each region where none exist. These two data sets 
may be represented as histograms in this decision variable. The degree of separation between these two 
distributions is often characterized by the detectability index d’, given by the difference between the means 
of these distributions divided by the square root of the average of their variances. This is sometimes called 
the signal-to-noise ratio (SNR) for detection. As noted in Ref. [2];the detectability index based on the area 
under the receiver operating characteristic curve dA is more appropriate for the binary decision task. But 8 
has better statistical accuracy than dA and is more likely to be a continuous function of the parameters that 
can be varied in the reconstruction procedure. This makes d’ preferable for the purpose of optimization. 

When ten randomly generated scenes similar to Fig. 1 are reconstructed and analyzed to obtain an 
average value for d’, it is found that d’ is 0.871 for unconstrained reconstructions and 2.054 for those 
employing the nonnegativity constraint. Indeed, the nonnegativity constraint has improved detectability. 

Fig. 3 shows how various choices for optimization functions depend on X0 and 7~ for constrained ART. 
The Ll difference is based on the Ll norm of the difference between the reconstruction and the originalimage. 
The rms residual is essentially fl. There is a definite minimum in these functions indicating optimum 
operating points for these two parameters. However, the minima are at different positions. Which one do 
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Figure 3: Contour plots of four o$imization functions plotted as a function of the relaxation parameters 
X0 and rx used in the constrained ART reconstruction algorithm. The measurement consist of 12 noiseless, 
parallel projections spanning 180'. The coarse sampling (10 x 10 points) of these functions, necessitated by 
the lengthy computation time required for each faction evaluation, accounts for the scalloping effects. 
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Figure 4: Optimized reconstructions of Fig. 1 from 12 noiseless parallel projections subtending 180' obtained 
with constrained ART. The reconstruction on the left is obtained with X0 = 2.96 and rx = 0.975, which is 
the optimum for detectability. The reconstruction on the right is obtained with Xe = 3.25 and r~ = 0.975, 
which produces the smallest rms difference between the reconstruction and the original image. Although 
the rms error in the reconstruction is a common measure for the quality of reconstruction, it yields more 
visible artifacts and reduces d’ from its optimum of 23.5 to 12.6. 

we choose? Fig. 4 shows the reconstructions obtained using the relaxation parameters for optimization with 
respect to 100/d' and the rms error in the reconstruction. There is an enormo,us improvement in the quality 
of both reconstructions over those shown in Fig. 2. Optimization with respect to IOO/d' appears to be 
preferable because it yields a d’ that is twice as large as the optimization with respect to rms error. The 
latter also leads to annoying streak artifacts, which are quite visible in a good display of the reconstruction. 
The same kind of contour plots for unconstrained ART are relatively flat and uninteresting. 

Fig. 5 shows reconstructions obtained from noisy data. Because of the large number of views, the data 
are complete. For the unconstrained and constrained reconstructions, d’ is found to be 1.995 and 1.825, 
respectively. In this case the nonnegativity constraint has worsened detectability, contrary to what might 
be concluded from a first glance. The CPU time required to calculate these detectabilities took about one 
hour on a VAX 8700, which is about four times faster than a VAX 785. 

The optimum values for Xe and r~, were found for various conditions of data collection using a function 
minimizer from the NAG library1 called EO4JB3. This routine finds the parameters for the minimum of a 
function after many evaluations of the function. From 20 to 100 function evaluations are required for the 
cases studied here. Table 1 tabulates the results obtained with unconstrained ART. In most cases relatively 
little improvement in detectability is achieved by optimization compared to that obtained with the nominal 
relaxation factors. In the noiseless cases, a value of unity for XK yields essentially the same results as the 
optimized values, a choice that is in agreement with common practice. However, for noisy data it seems 
desirable for rx to be less than unity and, when there are many views, X0 should be small. These choices 
are reasonable as they promote significant averaging over all the views. As a rule of thumb, for noisy but 
complete data, the relaxation factor should be approximately equal to the reciprocal of the number of views 
for the last few iterations. 

The results of optimizing constrained ART are presented in Table 2. The nonnegativity constraint is 
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Figure 5: Reconstructions of Fig. 1 from 100 noisy parallel projections subtending 180' obtained with the 
ART algorithm (right) with and (left) without the nonnegativity constraint. The rms noise added to the 
projection measurements is 8, which is ten times the peak projection value for one of the low-contrast discs. 
These reconstructions were obtained with X0 = 0.2 and rx = 0.8. 

seen to be generally useful with the nominal relaxation factors, particularly when the data are limited by the 
measurement geometry. But with optimization, huge improvements in detectability are obtained in these 
cases. Very large relaxation factors are preferred, in fact much larger than might be expected. However, 
when it is realized that the nonnegativity constraint has the effect of undoing the agreement with each 
measurement that should result from an update, it seems reasonable that overrelaxation is needed. Neither 
the use of nonnegativity nor the optimization has much benefit when the data are complete but noisy. 

Discussion 

In some of the imaging situations studied, the use of the nonnegativity constraint in ART significantly 
increases the detectability of objects, especially when the data consist of a limited number of noiseless 

Table 1: Summary of the effect of optimization with respect to the detectability index d’ on reconstructions 
obtained using 10 iterations of unconstrained ART. The optimum operating point was found by varying the 
parameters that control the relaxation factor used in the ART algorithm, X0 and r~, as discussed in the text. 
There is generally little improvement observed in detectability. 

number A0 rms . nominal optimized 

. proj 
100 

(deg.) noise & r~ d’ A* TX d’ 
is0 8 0.2 0.8 1.995 0.107 0.820 2.013 

8 180 0 -1.0 0.8 0.464 0.915 0.463 0.485 
12 180 0 1.0 0.8 0.871 0.427 0.729 0.932 
16 180 0 1.0 0.8 1.960 1.047 0.998 1.969 
16 90 0 1.0 0.8 1.122 1.714 0.993 1.202 
16 180 2 1.0 0.8 1.653 2.247 0.635 1.662 
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Table 2: Summary of the effect of optimization with respect to the detectability index d’ on ART reconstruc- 
tions incorporating the nonnegativity constraint. When the measurement geometry limits the reconstruction 
rather than noise in the data, dramatic improvement in detectability is seen to be possible. 

projections. Optimization is accomplished by varying the relaxation factor, both in terms of its initial 
value and the rate of its decline with iteration number. The detectability in the reconstructions obtained 
with constrained ART is dramatically enhanced by the optimization procedure in some cases. It is found 
that optimization of ART with respect to conventional measures of reconstruction quality, such as rms 
difference from the original image, results in reconstructions with more artifacts and lower detectability. For 
unconstrained ART, little improvement was achieved through optimization. 

It is concluded that it is important to optimize image-reconstruction algorithms on the basis of what 
is most important, which can often be defined in terms of a visual task that is to be performed using the 
final image. The approach taken here is based on a Monte Carlo simulation of the complete imaging process 
from the composition of the original scene to the final interpretation of the reconstructed image. This 
method is consistent with the assertion that an algorithm can only be properly evaluated by testing it on a 
statistically meaningful sample of trials in which all the uncontrollable variables in the problem are varied. 
This numerical simulation technique has several great advantages. It can be used to evaluate the net effect of 
complex scenes on the reconstructed images. It is particularly useful in situations that do not lend themselves 
to analytic analysis, as in nonlinear algorithms like constrained ART. It can optimize the performance of 
iterative algorithms for an arbitrary number of iterations. These issues cannot be addressed directly by 
theoretical approaches to optimization. The major disadvantage of relying on the Monte Carlo numerical 
technique is that each result applies only to the specific imaging situation tested and generalizations are 
seldom possible. 
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